Ученые ТГУ помогут снизить число аварий на производстве
Поделиться: Аспирант Института прикладной математики и компьютерных наук ТГУ Дамир Мурзагулов разрабатывает методы и алгоритмы, которые позволят в автоматическом режиме выявлять аномалии в технологических сигналах.
Аспирант Института прикладной математики и компьютерных наук ТГУ Дамир Мурзагулов разрабатывает методы и алгоритмы, которые позволят в автоматическом режиме выявлять аномалии в технологических сигналах. Это поможет снизить количество поломок оборудования и нештатных ситуаций на предприятиях, для которых безопасность производства особенно важна – производства по нефтепереработке, предприятия ТЭК и т.д. Проект поддержан грантом РФФИ.
«Задача, поставленная в рамках проекта, заключается в разработке алгоритмов, которые позволят в режиме онлайн обрабатывать большие данные, поступающие с измерительных устройств, установленных на промышленном оборудовании – задвижки, компрессоры, насосы и т.д. Аномалии в технологических сигналах могут носить как позитивный, так и негативный характер, но, как правило, они являются свидетельством сбоев в работе оборудования либо предвестником отказа техники», – говорит молодой ученый ИПМКН ТГУ Дамир Мурзагулов.Сейчас технологические сигналы в большинстве случаев анализируются человеком-оператором, но, во-первых, не у каждого сотрудника хватит квалификации для того, чтобы выявить аномалии, во-вторых, объем поступающих данных настолько высок, что для их обработки тысяч сигналов потребуются десятки специалистов. Гораздо быстрее и качественнее эту задачу выполнят компьютерные модели. Для того, чтобы фиксировать тревожные изменения в сигналах, будут использованы разные подходы: от статистических методов до машинного обучения.
«Сейчас идет работа по созданию компьютерных моделей и специальных наборов данных, в которые вносят как нормальные, так и синтезированные сигналы с многочисленными типами аномалий с разного оборудования, Модель тренируется распознавать моменты, когда оборудование работает в штатном режиме, затем учится выявлять аномальные фрагменты в сигнале и анализировать риски. На основе полученной информации можно будет разработать предупреждающие меры, например, провести плановый ремонт, который всегда менее затратен по времени и финансам, нежели экстренный», – рассказывает Дамир Мурзагулов.Конечной целью исследования является создание отдельного продукта – системы предиктивного анализа технологических сигналов, которую можно будет легко интегрировать в ИТ-инфраструктуру промышленного предприятие и эксплуатировать без специалистов по анализу данных.
По словам аспиранта ТГУ, технологические данные, необходимые для создания наборов и обучения моделей, поступают от партнеров ТГУ – нефтедобывающих компаний и заводов по производству стройматериалов. Работу над созданием нового инструмента для Индустрии 4.0 ученый ТГУ планирует завершить в конце 2021 года.
Стоит отметить, что универсальных алгоритмов, позволяющих промышленникам автоматизировать диагностику технических сигналов, в России практически нет. Есть продукты, которые позволяют решать эти вопросы локально на отдельно взятом предприятии.
Последние новости
Заместитель прокурора региона Валерий Александрин провел личный прием жителей Верхнекетского района Томской области
Заместитель прокурора региона Валерий Александрин в режиме видеоконференцсвязи провел личный прием жителей Верхнекетского района Томской области.
Городские депутаты приготовили подарки участникам «Ёлки желаний»
Председатель Думы города Томска Сергей Сеченов и депутат Наталья Красницкая присоединились к всероссийской новогодней благотворительной акции «Ёлка желаний» .
Членам Общественного совета рассказали о налоговой амнистии при дроблении бизнеса и социальных вычетах в упрощенном порядке
Это архивная публикация - она может содержать устаревшую информацию. В Управлении Федеральной налоговой службы по Томской области состоялось очередное заседание Общественного совета при участии руководителя УФНС Юрия Куриленко .
Домашний интернет: выбор для тех, кто ценит комфорт и качество
Высокая скорость, стабильное соединение и выгодные тарифы для всей семьи